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EXECTIVE SUMMARY

This report compares the mode I boundary correction factor solutions for two symmetric
elliptical cracks emanating from a straight-shank hole.  A variety of methods were used to
generate the solutions.  A global-intermediate-local (GIL) hierarchical approach was developed
using the finite element method (FEM).  Comparisons were made with the following methods:
the FEM with the equivalent domain integral, semiempirical boundary correction factor
equations, the finite element alternating method, the boundary element method with the crack
opening displacement approach, the boundary element method using special crack-tip elements,
and the three-dimensional weight function method.  The boundary correction factor solutions
were within a band of ±3% of the average solution.
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INTRODUCTION

Accurate stress-intensity factor (SIF) solutions are required to conduct thorough damage
tolerance analyses of structures containing cracks.  Exact closed form SIF solutions for cracks in
three-dimensional solids are often lacking for complex configurations; therefore, approximate
solutions must be used.  Over the past two decades, considerable effort has been placed on
developing computationally efficient methods which provide highly accurate SIF solutions for
cracks in three-dimensional bodies.  A review of methods for the analysis of cracks in three-
dimensional solids was provided in reference 1.  Various methods have been used to obtain SIF
solution for surface and corner cracks in plates including the conventional finite element method
(FEM) [2-8], the finite element alternating method (FEAM) [9-12], the boundary element
method (BEM) [13-15], and the three-dimensional weight function method (WFM) [16-19].
With advances in pre- and postprocessors, computer hardware, and improvements in equation
solvers, time savings are being realized in both geometry development and analysis of complex
models.  With computational tools in place, SIF solutions required for damage tolerance
assessments of cracked complex structures can be obtained.

Two steps are typically used to obtain SIF solutions.  First, the stress and displacement fields for
the structure under the prescribed loading conditions are calculated.  Second, the SIF solutions
are extracted from the governing stress and displacement fields.  One of the most commonly used
approaches to determine SIF solutions is the FEM.  Several techniques have been developed
using FEM to approximate SIF solutions for cracks in three-dimensional solids including the
crack opening displacement (COD) method [20], the virtual crack extension (VCT) method [21-
22], the virtual crack closure technique (VCCT) [23], and the J-integral method using the
equivalent domain integral method (DIM) [8,9,24,25].  Stress-intensity factor equations have also
been obtained by fitting empirical equations to some of the SIF solutions obtained by finite
element analyses [26].

The FEAM [9-11] is an iterative approach alternating between a finite element analysis of the
uncracked finite body and an analytical solution of a crack subjected to traction forces in an
infinite medium.  The FEAM is a computationally efficient approach to obtain three-dimensional
SIF solutions.  Since the SIF is calculated using the analytical solution, the crack front does not
need to be modeled explicitly in the finite element analysis.  Only the stress concentrations due to
the geometry of the configuration, i.e., holes and cutouts, need to be accurately modeled.  Thus, a
relatively coarse mesh having a simple configuration of finite elements can be used in the FEAM
compared with conventional FEM used in fracture problems.

In the three-dimensional BEM, only the surface of the body needs to be modeled.  Thus, a model
may be built relatively quickly compared with conventional FEM.  Two programs that use the
BEM have been recently developed for fracture mechanics studies.  The first, FRacture ANalysis
Code in 3-Dimensions (FRANC3D), is a special purpose fracture mechanics and crack growth
simulation program which integrates a graphics user interface pre- and postprocessor, a boundary
element solver for three-dimensional solids, and a generalized shell analysis solver [27-30].  SIF
solutions are obtained using the COD method.  Plane strain assumptions are used in the
calculation.  The second program, Fracture Analysis by Distributed Dislocations in 3-Dimensions
(FADD3D) is a weakly singular, symmetric Galerkin BEM for the analysis of linearly elastic,
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isotropic, three-dimensional solids containing fractures [31,32].  An important aspect of the
numerical implementation in FADD3D is the use of a special crack-tip element which has
degrees of freedom along the crack front that correspond to the three modes of stress-intensity
factors which are solved for directly.  The method is applicable to a wide class of fracture
problems and has proven to provide highly accurate SIF solutions using relatively coarse meshes.

The WFM [16-19] is an efficient and accurate technique for determining three-dimensional SIF
solutions.  Using this approach a three-dimensional body is decomposed into thin slices in the
thickness and width directions.  Each slice is assumed to be in a state of generalized plane stress.
The three-dimensional effect is accounted for by forces acting on the crack surface due to shear
loading between slices and the restraining effect of the uncracked area on the cracked slices.

Several investigators have used hierarchical level approaches to study cracks in fuselage shell
structure [33-37].  The advantage of a hierarchical level approach is that model development and
analysis efforts are simplified by breaking a problem down to manageable levels of relative scale
and detail.  Boundary conditions at each level of analysis are passed onto subsequent analysis
levels.  At the highest level, a global analysis is conducted using known prescribed boundary
conditions applied to the fuselage which was typically idealized using shell elements to model
the skin and beam elements to model the substructure (frames and stringers).  The purpose of the
global analysis is to obtain accurate stress and displacement fields in the area of interest resulting
from the known boundary conditions.  These stress and displacement fields are used as boundary
conditions in the next level, a submodel that is a dimensional subset of the previous level and is
modeled with a more refined mesh with higher substructure detail.  Higher order shell elements
are typically used to model the substructure.  At the final level, a local analysis is conducted on a
highly refined mesh focused at the crack tip to determine the SIF solutions.  The number of levels
used in a hierarchical level approach depends on the complexity and size of the problem being
analyzed.  A two-level global-local approach was sufficient to obtain accurate results for large
cracks terminating in the skin bay region of fuselage structure [36, 37] whereas a three-level
global-intermediate-local approach was required to analyze small cracks emanating from rivet
holes in fuselage lap joint [33].

In this study, a three-level global-intermediate-local (GIL) hierarchical approach was developed
using FEM for the fracture mechanics analysis of cracks in three-dimensional solids.
Verification studies of the GIL approach were conducted using a problem consisting of two
symmetric cracks emanating from a straight-shank hole under remote tension.  First, convergence
studies were done to determine the level of mesh refinement needed for the global, intermediate,
and local models.  Next, the use of conventional and singularity elements in the local model was
assessed.  The solution obtained from the GIL approach was verified and compared with the
solutions obtained by several investigators using a variety of methods including the equivalent
domain integral method (DIM), semiempirical SIF equations, the FEAM, the BEM with the
crack opening displacement approach (FRANC3D), the BEM with special crack-tip elements
(FADD3D), and the three-dimensional Weight Function Method (WFM).  Table 1 lists the
methods that were compared and the participants who provided the solutions for each method.
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CONFIGURATION AND LOADING

The problem analyzed in this study consists of a pair of symmetric elliptical cracks emanating
from a straight-shank hole in a plate under far-field tension, figure 1.  The half height of the plate
(H) and half width (W) were chosen to be large enough to have a negligible effect on the stress-
intensity factors (H/W = 2) and the ratio of the straight-shank hole radius to plate width (R/W)
was 0.2.  The ratio of hole radius to thickness (R/t) was 2.  The plate has a modulus of elasticity,
E = 1 psi, and Poisson’s ratio, ν = 0.3.

A symmetrical elliptical corner crack configuration was analyzed with a crack depth to plate
thickness ratio (a/t) of 0.2 and a crack depth to crack length ratio (a/c) of 0.8.  A remote tension
load was applied with a constant stress, St = 1.0 unit force per unit area.

DEFINITION OF STRESS-INTENSITY FACTOR

The mode I stress-intensity factor (KI) at any location along the crack front under tensile loading
is given as
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where the boundary correction factor, Ft (tensile), is calculated along the crack front as a function
of the parametric angle.  The crack dimensions and parametric angle, ϕ, are defined in figure 1.
The parametric angle is the angle measured with reference to the circle contained within the
ellipse defining the crack front.  The angle, ϕ, is measured from the surface of the plate to the
boundary of the straight-shank hole.  The shape factor for an ellipse, Q, is the square of the
complete elliptic integral of the second kind [2]
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GLOBAL-INTERMEDIATE-LOCAL HIERARCHICAL APPROACH

In the hierarchical approaches, model development and analysis efforts are simplified by
breaking a problem into manageable levels of relative scale and detail.  Boundary conditions at
each level of analysis are passed onto subsequent analysis levels.  A three-level global-
intermediate-local (GIL) hierarchical finite element approach was used in this study to obtain the
SIF solutions for the problem as illustrated in figure 2.  The commercially available finite
element program ABAQUS 5.6 [38] was used for the analysis.  In the first step (global level) of
the GIL approach, an analysis of the plate subjected to the prescribed loading conditions was
conducted.  The crack was modeled in the global level using conventional elements.  A typical
mesh for the global level is shown in figure 2.  Due to symmetry in the geometry and loading,
one quadrant of the plate was modeled.  A typical mesh for the global model contained 1312
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twenty-noded brick elements.  Along the top edge, a 1-psi stress was applied.  Symmetry
boundary conditions were applied as indicated in the figure.

In the second step (intermediate level), an analysis was conducted in the high stress gradient
region near the straight-shank hole.  A refined mesh, shown in figure 2, of the region near the
hole was used to accurately capture the stress concentrations.  The crack region was modeled in
the intermediate level using conventional elements.  A typical mesh for the intermediate model
consisted of 5764 twenty-noded brick elements.  Symmetry boundary conditions were applied to
the crack plane.  The boundary conditions for the intermediate model were taken from the global
model using the submodelling features in ABAQUS.

In the final step (local level), a local analysis was conducted of a region around the crack front.
A highly refined mesh with elements orthogonal to the crack front was used.  The length of the
elements along the crack front was less than or equal a/20 where a is the minor crack length of
the elliptical crack.  Two types of meshes were used as shown in figure 2.  The first mesh,
containing only conventional elements, consisted of 1728 twenty-noded brick elements.  The
second mesh, consisting of 1152 twenty-noded brick elements, contained a ring of singularity
elements surrounding the crack front.  The singularity elements are twenty-noded isoparametric
brick elements with one side collapsed along the crack front and with the midside nodes on the

element sides adjacent to the collapsed side shifted to the quarter point to obtain the 1 r
singularity.  In both local meshes, symmetry boundary conditions were applied on the crack
plane. The intermediate model using the submodelling features in ABAQUS provided
displacement boundary conditions along the perimeter of the local model.

The J-integral was calculated along the crack front using the equivalent domain integral (EDI)
method.  For cases where there is no mixed mode fracture and assuming a plane strain elastic
material response, the mode I SIF at any point along the crack front can be calculated from the J-
integral as

2I 1

JE
K

ν−
=  (3)

RESULTS AND DISCUSSION

CONVERGENCE STUDIES.

Convergence studies were done to determine the level of mesh refinement needed for each of the
global, intermediate, and local models.  Typical results for the convergence study are shown in
figure 3 and table 2.  Results are presented in terms of the variation of the boundary correction
factor, Ft, as a function of the parametric angle, ϕ, for two meshes of the local model.  The first
mesh, Mesh A, consisted of 216 elements with 12 elements along the crack front.  The second
mesh, Mesh B, was much more refined consisting of 1728 elements with 24 elements along the
crack front.  Both meshes used conventional elements.  As shown, the results obtained using the
different mesh refinements differed by less than 0.8% indicating a converged solution was
obtained.
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CONVENTIONAL VERSUS SINGULARITY.

The use of conventional and singularity elements to model the crack front in the local model was
compared.  The boundary correction factor, Ft, calculated using conventional and singularity
elements as a function of the parametric angle, ϕ, is shown in figure 4 and table 2.  The crack
front was modeled using conventional elements (Mesh B) and singularity elements (Mesh C).  As
shown in figure 4, excellent agreement was obtained where the results from the two crack front
meshes differed by less than 0.6%.

Modeling the crack front using singularity elements has the advantage of capturing the square
root singularity and obtaining accurate near-field stresses and displacements.  However, the
process of forming a singularity element from a conventional brick element by collapsing the
side nearest the crack front and moving the midside nodes to the quarter point can be an
extremely tedious and time consuming task.  Modeling the crack front using conventional
elements is much easier and the use of conventional elements in fracture mechanics studies is
viable provided that the elements are of proper size (approximate length of a/20) and are
orthogonal to the crack front.  When the equivalent domain integral method is used to determine
the J-integral, it is not necessary to have extremely accurate stress and displacement fields.  As
the volume contour around the crack front used in the calculation of the J-integral increases, the
influence of the high stress and displacement gradients dissipates.

SOLUTION COMPARISONS.

The solution obtained from the GIL approach was verified and compared with the solutions
obtained by other investigators using the methods listed in table 1.  The following methods were
used:  the FRacture ANalysis Code in 3-Dimensions (FRANC3D) conducted by Cornell
University, the three-dimensional Weight Function Method (WFM) conducted by University of
South Carolina, the finite element alternating method (FEAM) conducted by Knowledge
Systems, Incorporated, the finite element method (FEM) with the equivalent domain integral
integral (DIM) conducted by Northwestern University [7], and the Fracture Analysis by
Distributed Dislocation in 3-Dimension (FADD3D) conducted by the University of Texas,
Austin.  In addition, the semiempirical SIF equation developed at NASA Langely [26] was used
in the comparison.  For the problem defined in figure 1, the semiempirical equation [26] is given
by
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where the parameters in equation 4 are provided in table 4.

The results of the various methods are shown in figure 5 and table 3 as boundary correction
factors along the crack front as a function of the parametric angle, ϕ.  Excellent agreement was
obtained among the methods listed in table 1 as shown in figure 5.  The dashed line indicates the
result from the semiempirical equation [26].  Results from the FRANC3D, FEAM, WFM, DIM,
FADD3D, and GIL were averaged.  The results calculated using the semiempirical SIF equation
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were similar to the average solution.  All solutions were within a narrow band of ±3% about the
average solution; the ±3% band is shown by the solid lines in figure 5.

CONCLUDING REMARKS

A global-intermediate-local (GIL) hierarchical approach was developed using the finite element
method (FEM).  The objective was to develop and verify the GIL approach by comparing the
GIL results to results from various other methods.  Using the GIL approach, the boundary
correction factors along the crack front were calculated using the equivalent domain integral
method.  Convergence studies were done to determine the level of mesh refinement needed for
the each of the global, intermediate, and local models.  The use of conventional elements to
model crack front provided the same boundary correction factor results as using singularity
elements.

For the problem of two symmetric cracks emanating from a straight-shank hole under remote
tension, a comparison was made with a variety of other methods:  finite element method (FEM)
with the equivalent domain integral method (DIM), semiempirical equations, the finite element
alternating method (FEAM), boundary element method (BEM) with the crack opening
displacement approach (FRANC3D), the BEM using special crack-tip elements (FADD3D), and
the three-dimensional Weight Function Method (WFM).  Results for all the methods were in
excellent agreement and fell within a band of ±3% of the average of all the solutions.  These
results verified the GIL approach developed in the current study.

These results also show that there are a variety of computational methods that can be used to
calculate accurate boundary correction factor solutions for cracks in three-dimensional solids.  It
should be pointed out, however, that these are all sophisticated, complex methods that require a
knowledgeable user.  Those methods that use a mesh (whether boundary element or finite
element methods) also require convergence studies to insure that the mesh is refinement
sufficient to obtain the desired accuracy.
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FIGURE 3.  CONVERGENCE STUDY COMPARISON OF RESULTS FROM TWO MESHES
OF LOCAL MODEL

FIGURE 4.  COMPARISON OF RESULTS USING CONVENTIONAL AND SINGULARITY
ELEMENTS
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FIGURE 5.  COMPARISON OF RESULTS FROM ALL SOLUTION METHODS

TABLE 1.  STUDY PARTICIPANTS AND METHODS USED

Principle Investigator Affiliation Method

James Newman [26 ]
NASA Langley Research
Center (LaRC)

Semiempirical SIF Equation

Paul Wawrzynek
Cornell University (CU) The FRacture ANalysis Code

in 3 Dimensions (FRANC3D)

Wei Zhao
University of South Carolina
(USC)

Three-Dimensional Weight
Function Method (WFM)

Daniel S. Pipkins
Knowledge Systems
Incorporated (KSI)

Finite Element Alternating
Method (FEAM)

Brian Moran [7]
Northwestern University
(NWU)

Domain Integral Method
(DIM)

Mark Mear
University of Texas, Austin
(UTA)

Fracture Analysis by
Distributed Dislocations in
3 Dimensions (FADD3D)

John Bakuckas
FAA William J. Hughes
Technical Center

Global-Intermediate-Local
(GIL)

Factor, Ft

Boundary Correction

Parmetric Angle, ϕ
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TABLE 2.  BOUNDARY CORRECTION FACTORS FROM THREE MESHES OF
LOCAL MODEL

Mesh A – Conv. Mesh B – Conv. Mesh C – Sing.
ϕ Ft ϕ Ft ϕ Ft

3.008
6.011
9.185

12.344
15.672
18.975
22.436
25.866
29.452
32.985
36.692
40.337
44.157
47.909
51.837
55.713
59.760
63.769
67.970
72.122
76.495
80.837
85.427

2.740
2.669
2.660
2.637
2.621
2.622
2.617
2.633
2.640
2.666
2.686
2.718
2.750
2.790
2.829
2.879
2.925
2.984
3.040
3.108
3.185
3.248
3.377

1.464
2.928
4.434
5.940
7.490
9.036

10.625
12.211
13.841
15.465
17.129
18.782
20.485
22.176
23.912
25.645
27.408
29.166
30.963
32.751
34.574
36.386
38.241
40.082
41.973
43.847
45.756
47.658
49.611
51.535
53.517
55.477
57.492
59.486
61.531
63.573
65.656
67.728
69.858
71.970
74.150
76.314
78.532
80.755
83.037
85.314
87.655

2.741
2.679
2.696
2.670
2.656
2.641
2.630
2.621
2.611
2.607
2.601
2.602
2.597
2.604
2.602
2.611
2.614
2.623
2.631
2.641
2.653
2.665
2.678
2.696
2.708
2.731
2.744
2.766
2.784
2.806
2.827
2.852
2.875
2.901
2.926
2.955
2.984
3.015
3.046
3.081
3.115
3.155
3.195
3.238
3.291
3.310
3.397

1.464
2.928
4.434
5.940
7.490
9.036

10.625
12.211
13.841
15.465
17.129
18.782
20.485
22.176
23.912
25.645
27.408
29.166
30.963
32.751
34.574
36.386
38.241
40.082
41.973
43.847
45.756
47.658
49.611
51.535
53.517
55.477
57.492
59.486
61.531
63.573
65.656
67.728
69.858
71.970
74.150
76.314
78.532
80.755
83.037
85.314
87.655

2.713
2.690
2.683
2.660
2.647
2.629
2.621
2.609
2.601
2.594
2.591
2.590
2.586
2.592
2.591
2.599
2.603
2.610
2.620
2.628
2.641
2.651
2.666
2.681
2.696
2.715
2.731
2.750
2.770
2.790
2.813
2.836
2.860
2.885
2.912
2.937
2.969
2.997
3.030
3.062
3.100
3.136
3.179
3.220
3.273
3.302
3.382
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TABLE 3.  BOUNDARY CORRECTION FACTORS FROM A VARIETY OF APPROACHES

FRANC3D
CU

WFM
USC

FEAM
KSI

DIM
NWU

FADD3D
UTA

ϕ Ft ϕ Ft ϕ Ft ϕ Ft ϕ Ft

1.125
5.619
10.211
14.635
18.999
23.288
27.604
31.820
36.037
40.135
44.219
48.179
52.021
55.939
59.742
63.529
67.217
70.905
74.599
78.229
81.890
85.515
89.120

2.830
2.774
2.703
2.653
2.604
2.613
2.619
2.638
2.672
2.683
2.717
2.746
2.776
2.828
2.860
2.905
2.961
2.996
3.061
3.145
3.242
3.372
3.533

0.125
5.619
11.322
16.947
22.460
28.065
33.832
39.389
45.041
50.557
56.315
61.919
67.477
75.015
82.536
86.237
89.920

2.826
2.594
2.493
2.470
2.492
2.518
2.552
2.590
2.644
2.712
2.796
2.882
2.964
3.075
3.240
3.324
3.433

0.000
5.000
10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000
55.000
60.000
65.000
70.000
75.000
80.000
85.000
90.000

2.561
2.554
2.556
2.567
2.588
2.619
2.654
2.697
2.748
2.800
2.855
2.914
2.973
3.030
3.088
3.141
3.191
3.238
3.279

1.737
3.810
6.303
9.308
12.897
17.213
22.389
28.605
36.058
45.000
55.080
63.146
69.602
74.765
78.891
82.197
84.840
86.950
88.648

2.592
2.592
2.570
2.545
2.524
2.511
2.511
2.531
2.578
2.654
2.755
2.864
2.968
3.064
3.150
3.224
3.283
3.324
3.324

2.000
4.000
8.000
12.000
19.000
26.000
35.500
45.000
54.500
64.000
71.000
78.000
82.000
86.000
88.000

2.697
2.673
2.649
2.625
2.608
2.620
2.670
2.749
2.850
2.972
3.073
3.192
3.271
3.335
3.374
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TABLE 4.  PARAMETERS USED IN SEMIEMPERICAL EQUATION [26]

Para. a/c ≤ 1 a/c > 1
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